

INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

ABORATORY OF BUILDING PHYSICS

TEST REPORT No. 074 SF/18

Date: 26 of April 2018

page (pages)

1(2)

Determination of installed thermal resistance into a wall of TRISOBARDAGE according to EN ISO 6946:2017

(test name)

Test method:

Determination of installed thermal resistance into a wall of TRISOBARDAGE according

to EN ISO 6946:2007

(number of normative document or test method, description of test procedure, test uncertainty)

Product name:

TRISOBARDAGE

(identification of the specimen)

Customer:

SA Orion financement - Avenue de la Gare - FR-11230 CHALABRE, France

(name and address of enterprise)

Manufacturer: ACTIS SA Avenue de Catalogne, 11300 Limoux, France

(name and address of enterprise)

Calculation results:

	Calculation method reference no.	Air cavity		Calculation result,
Roof slope angle, α		Inner	Outer	R, (m ² ·K)/W
Wall (a. = 009)	EN ISO 6946:2017	unventilated	unventilated	3,85
Wall (α = 90°)			slightly-ventilated	3,83

Calculation

Laboratory of Building Physics, Institute of Architecture and Construction of Kaunas

made by:

University of Technology

(Name of the organization)

Products used

in calculation:

TRISOBARDAGE (according to the test report No. 141-1-1 SF/17 U)

Application, 2016-02-23

Additions information:

The emissivity of surfaces:

- ε_1 (metalized and perforated side -inside) = 0,08;

 $-\varepsilon_2$ (black side- outside) = 0,9.

Annex:

1. Calculations results

(the numbers of the annexes should be pointed out)

Head of Laboratory:

(approves the test results)

K. Banionis (n., surname)

Tested by

(calculation made by)

 A. Levinskytė (n., surname)

DOKUMENTAL

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication - no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Science Laboratory of Building Thermal Physics.

Web site: www.ktu.edu/asi/en/; E.mail: statybine.fizika@ktu.lt

Annex 1: Calculations results

Table 1: Products R-value according to LST EN 16012:2012+A1:2015

Product	"R-core thermal resistance, (m²·K)/W	
TRISOBARDAGE (test report No. 141-1 SF/17 U)	3,08	

Figure 1. Wall construction design

1.	Unventilated Air cavity #1	
2.	TRISOBARDAGE, 95 mm	
3.	Unventilated or slightly- ventilated Air cavity #2	

Table 2: Wall construction calculation results for slope $\alpha = 90^{\circ}$ (EN ISO 6946)

TF	RISOBARDAGE installed on wa	11	
Angle: $\alpha = 90^{\circ}$	Layer	R value	Unit
Horizontal Heat Flux (Winter period)	Unventilated Air cavity # 1	0,5881	m²·K/W
	TRISOBARDAGE	3,08	m²·K/W
	Unventilated Air cavity # 2	0,1830	m²·K/W
	R _{Total}	3,8511	m²·K/W

TRISOBARDAGE installed on wall				
Angle: $a = 90^{\circ}$	Layer	R value	Unit	
Horizontal Heat Flux (Winter period)	Unventilated Air cavity # 1	0,5881	m²·K/W	
	TRISOBARDAGE	3,08	m²·K/W	
	Slightly-ventilated Air cavity # 2	0,1616	m²·K/W	
	R _{Total}	3,8297	m²·K/W	

Requirements for calculation validity:

- Calculations of R values are valid when TRISOBARDAGE is installed from the internal side of the wall or the external part of the wall.
- Calculations of R values are valid when TRISOBARDAGE is installed in agreement with the installation guidelines described into the manufacturer brochure.
- Calculations of R values are valid when unventilated air cavities are at least 20 mm thick.

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Science Laboratory of Building Thermal Physics.